Rank-1 tensor approximation for high-order association in multi-target tracking

摘要

High-order motion information is important in multi-target tracking (MTT) especially when dealing with large inter-target ambiguities. Such high-order information can be naturally modeled as a multi-dimensional assignment (MDA) problem, whose global solution is however intractable in general. In this paper, we propose a novel framework to the problem by reshaping MTT as a rank-1 tensor approximation problem (R1TA). We first show that MDA and R1TA share the same objective function and similar constraints. This discovery opens a door to use high-order tensor analysis for MTT and suggests the exploration of R1TA. In particular, we develop a tensor power iteration algorithm to effectively capture high-order motion information as well as appearance variation. The proposed algorithm is evaluated on a diverse set of datasets including aerial video sequences containing ariel borne dense highway scenes, top-view pedestrian trajectories, multiple similar objects, normal view pedestrians and vehicles. The effectiveness of the proposed algorithm is clearly demonstrated in these experiments.

精选论文
出版物
International Journal of Computer Vision (IJCV)