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 

Abstract—To protect underage people from accessing 

objectionable videos in the Internet, an effective objectionable 

video recognition algorithm is necessary for web filtering. 

Recently, the multi-instance learning has been introduced for 

objectionable video recognition and achieves impressive results. 

However, hand-crafted features as well as redundant and noisy 

frames in objectionable videos become an intractable problem 

that inevitably degrades the recognition performance. In this 

paper, we propose a novel representative prototype selection 

algorithm embedding deep multi-instance representation learning. 

In the proposed method, an improved convolutional neural 

network is designed for multimodal multi-instance feature 

learning and a self-expressive dictionary learning model based on 

sparse and low rank constraint is designed to select the 

representative prototypes from each subspace of instances. Then 

the bag-level feature is constructed via mapping the bag to the 
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selected prototypes. Experiments on three objectionable video sets 

show the effectiveness of our method for objectionable video 

recognition.  

 
Index Terms—Representative prototype selection, 

Objectionable video recognition, Deep learning.  

I. INTRODUCTION 

ith an exceptional boosting in the creation and 

propagation of multimedia content through Internet, the 

lack of control has allowed the distribution of many harmful 

documents related with pornography, violence, horror, racism, 

etc. To prevent people, especially sensitive social groups (e.g. 

children), from all kinds of harmful materials on the Internet, 

many content-based web filtering systems have been developed 

[1, 2, 3]. Effective recognition of objectionable videos is 

necessary for such web content security [4]. Recognition of 

objectionable videos is a newly emergent research topic in the 

context of excellent multimedia applications including 

multimedia retrieval [5, 6, 7, 8], multimedia content 

understanding [9, 10, 11, 12, 13], and multimodal fusion [14, 

15, 16, 17], etc. In this paper, we focus on horror and violent 

video recognition which are still being under exploration. 

A.  Related Work 

The definition of violence and horror is very subjective. In 

this paper, we simplify the concept by such definitions: violent 

scene will stimulate emotion impulses through showing the use 

of force to injure others or oneself, it usually includes fights, 

gun shots, explosions, and self-mutilation; while horror scene 

will strive to elicit the primary emotions of fear, horror, and 

terror, it usually includes serial killings, ghosts, monsters, 

vampires, animal killing, and irreligion [18]. The existing 

recognition methods for violent and horror videos can be 

classified into two types, video-based methods and 

frame-based methods, that differ in the way how the frames in a 

video are treated. Video-based method can be viewed as a 

global solution, while frame-based method can be viewed as a 

local one. 

The video-based method treats a video as a single sample and 

extracts a global feature vector from the whole video without 

considering the content of a single frame in it. Yang et al. [19] 

presented a set of features for horror video recognition and 

studied the strength and disadvantage of classical affective 

recognition algorithms in horror video recognition. Inspired by 
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emotional perception theory, Wang et al. [20] extracted several 

effective holistic features and used support vector machine 

(SVM) to identify horror videos. Datta et al. [21] addressed the 

problem of detecting human violence in a video based on 

motion trajectory information and orientation information of a 

person’s limbs. JeHo Nam et al. [22] exploited multiple 

“audio-visual” signatures to create a perceptual relation for 

conceptually meaningful violent video scene identification. 

Considering the importance of local spatio-temporal features in 

characterizing the multimedia content, De Souza [23] presented 

a violence detector built on the concept of visual codebooks, it 

used linear support vector machines that considered local 

spatio-temporal features with bags of visual words. To get 

discriminative features for the representation of violent video 

segments, Acar et al. [24] constructed mid-level audio features 

with vector quantization-based (VQ-based) method and sparse 

coding-based (SC-based) method. Based on Multiple Kernel 

Learning and the combination of visual and audio features, 

Shinichi et al. [25] introduced Mid-level Violence Clustering to 

solve violent scenes recognition. The big problem of the 

video-based method is that those global features extracted from 

a whole video are lack of discrimination because horror/violent 

scenes do not often show up in the majority frames.  

To avoid such limitations, the frame-based methods follow 

the paradigm of multi-instance learning (MIL) which has been 

successfully used in visual applications and exploited new idea 

of traditional computer vision[26,27]. It treats each video as a 

bag of frames and labels it objectionable if there exists at least 

one objectionable frame. The features of each frame are 

extracted and considered by MIL algorithms during recognition. 

Such kind of solution can be dated back to the work of Wang et 

al. [28] and Wu et al. [29], who firstly introduced MIL into 

horror video recognition. In the MIL-based methods, a video is 

represented as a bag of key frames with corresponding 

independent features. To consider the multiple semantics of the 

objectionable video, Hu et al. [18] proposed Multi-Perspective 

Context-Aware Cost-Sensitive Multi-Instance Sparse Coding 

combining Multi-Instance Learning (MC-MI-J-SC) to 

recognize violent and horror videos. Hao et al. [30] classified 

the video into violent and non-violent using Multi-Modal 

Multi-Instance Learning and Attribute Discovery approach by 

combining audio-video with text information for web video 

recognition. 

Although frame-based methods with MIL generally achieve 

better performance, it is still subject to two limitations. On the 

one hand, the features used in most existing methods are 

hand-crafted feature descriptors which usually require 

substantial prior domain knowledge. With the increasing 

popularity of the deep learning-based approaches, deep feature 

learning has shown much better performance in many visual 

applications [31,32,33,34]. There needs more advanced feature 

to capture high-level semantics in diverse unconstrained videos. 

On the other hand, the non-objectionable instances in 

objectionable bags bring a large amount of redundant and noise 

information that has no discrimination for recognition. How to 

effectively prune these useless instances and keep the 

discriminative and representative ones still remains a 

challenging problem for objectionable video recognition. 

B. Our Method 

 To address the two problems of frame-based methods, we 

propose a novel representative prototype selection algorithm 

(MILRPS) embedding deep multi-instance representation 

learning and apply it to objectionable video recognition. In this 

method, a novel multi-instance convolutional neural network is 

proposed to learn discrimination features of each instance. 

Then a self-expressive dictionary learning model with low-rank 

and sparse constraints is proposed to select a set of 

representative prototypes. After bag feature mapping to these 

prototypes, a more effective objectionable video recognition 

system can be built.  

The main contributions of our work are two-fold.  

(i) The proposal of the deep multi-instance representation 

learning. Most existing deep representation learning methods 

are trained for single instance applications. They cannot be 

used directly in MIL applications due to the unknown labels of 

instances. To overcome this limitation, a novel CNN with new 

prediction loss is especially designed for MIL. It can be trained 

using bag’s label instead of instances’. In addition, to fuse both 

visual and audio features, a two-channel structure is integrated 

to learn high level multimodal instance features. 

(ii) The proposal of a novel instance selection framework 

embedding three constraints according to the characteristics of 

the selected representative prototypes:  

 Sparsity criteria which ensures that the most informative 

instances will be selected. 

 Low rank criteria which ensures that the selected 

prototypes will distribute among each subspace.  

 Error term   which improves the robustness through 

modeling the noisy and possible corruption. 

The remainder of this paper is organized as follows. We 

briefly introduce the overview of the proposed method in 

section II. Section III gives out the construction of deep 

multi-instance representation learning. The details of the 

prototype selection based on self-expressive dictionary learning 

are presented in section IV. The experimental results and 

analysis are reported in section V. Section VI concludes this 

paper. 

II. SYSTEM OVERVIEW 

The objectionable video recognition proceeds in five main 

stages: shot segmentation and key frame extraction, deep 

multi-instance representation learning, representative 

prototypes selection, bag feature mapping and objectionable 

video recognition. Fig. 1 gives an overview of our framework.  

Step 1: Shot segmentation and key frame extraction. Given 

a set of videos, we firstly divide each of them into shots through 

measuring mutual information (MI) transported from one frame 

to another [35]. Then central frame of every shot is extracted as 

key frame and audio of each shot is transformed into 2-D image 

based on the spectrogram [36].  

Step 2: Deep multi-instance representation learning. The 

key frames and the spectrograms in a video are integrally fed 
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into the designed multi-instance CNN (MI-CNN) to learn the 

deep instance feature. Two fully connected layers are designed 

for multimodal fusing and a new loss prediction based on the 

assumption of MIL is designed for back propagation. After 

training, we get the output of the second fully connected layer 

in the CNN as the high level feature of instance. Then, the video 

bag is considered as a set of deep instance features extracted 

from its key frames and audio spectrograms. 

Step 3: Representative prototypes selection. To prune the 

redundancy and disturbance (non-objectionable instance) in 

bags, especially those positive bags (objectionable videos), we 

construct self-expressive dictionary learning to select 

representative prototypes. To make the representatives 

approach the distribution of instance subspaces to the utmost, 

we add sparse and low rank constraint to the self-expressive 

model. Meanwhile, an additional error term is also appended to 

improve robustness of proposed method when confronting data 

noise and corruption. We measure the importance of 

representatives through ranking their capacity and select top k 

representatives to compose the mapping prototype set (MPS). 

Step 4: Bag feature mapping. Through bag feature mapping 

which computes the similarity between a bag and each mapping 

prototype in MPS, we can obtain the bag-level feature. Then a 

SVM classifier is trained on these bag-level features with 

corresponding bag labels. 

Step 5: Objectionable video recognition. For a test video, 

after feature extraction and bag construction, we map the test 

video bag to MPS and get test bag’s feature. Finally, we apply 

the trained SVM on a test video to estimate its category 

(objectionable or non-objectionable).  

 

Fig.1. Framework of proposed method with five main stages. Step 1: shots in videos are segmented through measuring mutual information (MI) and key frames and 

audios are extracted from each shot; Step 2: key frames and audio spectrograms in a video are integrally fed into the multi-instance CNN (MI-CNN) to learning the 
deep instance feature; Step 3: self-expressive dictionary learning is constructed to select representative prototypes and build the mapping prototype set(MPS); Step 

4: bag-level feature is obtained by computing the similarity between a bag and each mapping prototype in MPS; Step5: the SVM trained by mapping features is 

applied to a test video to estimate its category (objectionable or non-objectionable). 

 
Fig.2. Framework of MI-CNN. There are two channels to learn the visual and audio features respectively. Each channel is a CNN with five convolutional layers 

(Conv1~Conv5) followed by a pooling layer and three fully connected layers(FC1~FC3). To fuse the multimodal features, the visual and audio channels are 

combined at the last two fully connected layers (FC2 and FC3). For each channel, the audio or visual instances in a video are fed into the net successively and the 

label prediction of each instance is computed through softmax layer after FC3 in sequence. Finally, the label of bag is predicted by NoisyOR layer with all predicted 
labels of instances in it. 

III. DEEP MULTI-INSTANCE REPRESENTATION LEARNING 

In this section, we present a novel deep multi-instance 

representation learning method. Before giving out the details, 

we briefly review the definition of MIL. Given a training data 

set *(     )   (     )   (     )+ , where    *      
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+ is a video bag and      *     + is its label. 

The     is an instance in bag    which specifically refers to the 

key frame as well as its contextual audio spectrogram.   is the 

number of training bags,    is the number of instances in   . If 

there exists   *      + such that     is a positive instance, 

then    is a positive bag and thus      ; otherwise      . 

A. Deep MIL Framework 

Considering the success of the AlexNet [33] in visual 

applications, we use it as our basic architecture to learn the 

instance feature. The proposed deep MIL framework is as 

shown in the Fig. 2. There are two channels to learn the visual 

and audio features respectively. Each channel is a CNN with 

five convolutional layers followed by a pooling layer and three 

fully connected layers. To fuse the multimodal features, the 

visual and audio channels are combined at the last two fully 

connected layers (FC2 and FC3). 

It is well known that the input of CNN is single instance and 

the output of the last fully connected layer with a softmax is the 

label prediction of the instance. Through optimization of the 

loss between prediction and target with back propagation, the 

weights of the network can be learned. However, the instance 

label in MIL is unknown so that the traditional training process 

cannot be used for MIL paradigms. In this paper, we consider to 

utilize the label of bag to modify the training of the CNN 

network. 

Based on the assumption of MIL, the bag label is determined 

by the labels of its instance. Consequently, in the training 

process, a bag of instances instead of one instance are inputted 

into the network and an additional prediction layer “Noisy OR” 

is added after the last fully connected layer of instance as shown 

in the Fig.2. Through the additional layer, the bag label can be 

predicted based on the label predictions of all instances in it. 

We call this modified CNN multi-instance CNN (MI-CNN). 

To train the MI-CNN, a new prediction loss is designed to 

realize the back propagation. Inputting one training bag (     ) 

into the network, for each of its instances     (        ) we 

can get layer-wise features from the first convolutional layer 

(Conv1) to the output of the last fully connected layer (FC3). 

Supposing the FC3 output of the jth instance is      , 

followed by a softmax layer,     is transformed into a 

probability distribution       for objects of binary 

classification as following: 

    
 

      (    )
                                   ( ) 

However     cannot be used to compute the loss for the 

unknown label of instance. Under the definition of MIL, if there 

exists one positive instance in the bag, then the bag is positive; 

otherwise, the bag is negative. We introduce the NoisyOR 

generative model [38] and predict the probability distribution 

   of a bag as a “Noisy OR” of instance probability: 

     ∏ (     
 

)                               ( ) 

Next, cross entropy is used to measure the prediction loss of 

the network. Specifically, we have 

      ,     (  )  (    )    (    )-       ( ) 

Then the gradients of the deep convolutional neural network 

are calculated via back propagation: 

     

    
 

     

   

 
   

    

 
    

    
 

         (
  

  

 
    

    

)  ,∏ (     
   

)-  [   (     )] 

            
(     )   

  

                                                                   ( ) 

According to (4), we can iteratively update the weights of 

networks using the back propagation until getting ideal loss. 

B. Deep Instance Feature Extraction 

For an unknown video bag, the MI-CNN can be directly used 

to predict its label. In the experiments section, we will test its 

performance. However, the MI-CNN is intuitively constructed 

based on MIL. According to aforementioned analysis, some of 

the instances might not be responsible for the observed 

classification of the bags. Such redundant or irrelevant 

instances may bring much disturbance to the intuitive 

classification. So, MI-CNN can also be used as a deep feature 

extractor and a more effective MIL classifier is proposed based 

on the deep features in Section IV. For each instance    , we can 

extract the output of the second fully connected layer (FC2) as 

its deep feature, represented as    . Then a video bag    can be 

represented as    *                
+   . 

IV. REPRESENTATIVE PROTOTYPE SELECTION BASED ON 

SELF-EXPRESSIVE DICTIONARY LEARNING 

After obtaining the deep features of each instance, this 

section is to design an effective MIL classifier. How to 

effectively prune the useless instances and keep the 

discriminative and representative ones still remains a 

challenging problem for MIL-based objectionable video 

recognition. Although there are excellent strategies to select 

prototypes [7,39,40], MILES [39] has the difficulty of holding 

the increasing mapping dimension when confronting large 

number of instances and the strategies in [7,40] are lack of 

representativeness so as to missing information of the instance 

space. So, more progressive selection framework should be 

designed. 

It can be observed that data has the self-expressiveness 

property, stating that each data point in a union of subspaces 

can be efficiently reconstructed by a combination of other 

points in the dataset [41]. Representative instances selection in 

this paper is just to learn those instance points which can 

reconstruct all instances coming from the union of subspaces. If 

we choose instances as dictionary atoms, we can select the 

representative ones with proper constraint. 
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A. Self-expressive Dictionary Learning With Low Rank and 

Sparse Coding (SEDL-LRSC) 

Let   ,          -  ,          
             

   

          
-      ,            , represent all 

the instances in training video bags. Then the matrix of data 

points   can be considered as a self-expressive dictionary in 

which each point can be written as a linear combination of other 

points. For all instances, we can get the expression as: 

     ,     ( )                                  ( ) 

where   ,    -     
  is the reconstruction coefficient vector 

and the constraint    =0 eliminates the trivial solution of 

writing a point as a linear combination of itself. However, the 

representation of    in the dictionary   is not unique in general. 

This comes from the fact that the number of data points in a 

subspace is often greater than its dimension. So, appropriate 

constraint term should be added. 

As we all know, some instances in video bags are redundant 

and useless, so self-expressive dictionary learning should have 

the ability of select the most informal instances. Sparse 

constraint can well ensure such purpose. Furthermore, 

instances in video bags are diverse. They may be horrible, 

bloody, violent, sad, nauseating, exciting and so on. We can 

suppose that these instances are from different subspaces. It has 

been proven that, under mild conditions, low-rank 

representation can correctly preserve the membership of 

samples that belong to the same subspace [42,43]. In addition, 

the data are often noisy and even grossly corrupted in real 

applications, e.g. damaged frame or noisy voice, so we add a 

noise term E to the reconstruction term      in Eq.(5) as 

      . Suppose that a fraction of random entries in the 

instance vectors are grossly corrupted, then   should be sparse. 

So, we extend the self-expressive dictionary learning with 

following constraints: 

   
   

‖ ‖   ‖ ‖     ‖ ‖                        ( ) 

                  

where ‖   ‖   is the nuclear norm of a matrix [44], i.e., the sum 

of the singular values of the matrix, ‖   ‖    is the 


-norm of 

a matrix and ‖   ‖  is the  -norm of a matrix. A nonnegative 

constraint is also added in Eq. (6) because it is more consistent 

with the biological modeling of visual data and often leads to 

better performance for data representation [45,46,47]. 

B. Optimization for SEDL-LRSC  

To solve the SEDL_LRSC problem in Eq. (6), we extend the 

Augmented Lagrangian Multiplier (ALM) [48] that has been 

widely used for the standard low-rank problem. By introducing 

a new parameter  , Eq. (6) can be converted into the following 

equivalent problem: 

   
   

‖ ‖   ‖ ‖     ‖ ‖                        ( ) 

                      

The Eq. (7) can be solved by the ALM method that minimizes 

the following augmented Lagrange function [49,50]: 

 (             )  ‖ ‖   ‖ ‖    

     ‖ ‖  〈         〉  〈      〉  

    
 

 
(‖      ‖ 

  ‖   ‖ 
 )  

     ‖ ‖   ‖ ‖     ‖ ‖  
 

 
(‖       

     
  

 
‖

 

 

 ‖    
  

 
‖

 

 

)  
 

  
(‖  ‖ 

  ‖  ‖ 
 )  

(8) 

where <   > indicates inner product,    and    are Lagrange 

multipliers, and     is a penalty parameter. The function (8) 

is minimized by updating each of the variables     and   one 

at a time and then the Lagrange multipliers    and   . More 

details represent at Appendix. 

C. Representative Prototype Selection 

To get more discriminative features used in bag-level feature 

mapping, we should select most representative instances to 

form the mapping prototype set. As Eq. (6) learned, the nonzero 

rows of   indicate the representatives. Furthermore, the 2

-norm of each row in   provides its relative importance ranking. 

More precisely, representative whose corresponding row in the 

optimal coefficient matrix   has higher 2 -norm has a higher 

important ranking to take part in the reconstruction of many 

points in the instance space. Denote the jth column of   as   , 

the ith row as   . Thus, we rank   representatives           as 

          , i.e.,     has the highest rank and     has the 

lowest rank, whenever for the corresponding rows of   we have 

‖   ‖  ‖   ‖    ‖   ‖                     ( ) 

where ‖ ‖  is the 


-norm of vector   and is regarded as a 

measurement of the capacity of representatives. 

We order instances in    according to their capacity in 

descending order and select top    instances as the mapping 

prototype set (MPS). 

D. Bag Feature Mapping and Classification 

After getting the MPS, we can get the bag-level feature 

through the similarity-based feature mapping, as in MILES [40]. 

Let *          + be the MPS. For a bag    and instance  , 

the similarity between them is given by 

   (    )     
      

    (  ‖     ‖
 
)               (  ) 

where   is a similarity scale parameter. Then, the bag-level 

feature vector of    can be constructed based on the similarity 

between    and each instance in MPS as following: 

   
 ,   (    

 )    (    
 )      (    

 )-      (  ) 

Similarly, we can get the bag-level feature of a given test video 

bag (     ) as: 

    ,   (     )    (     )      (     )-     (  ) 

Finally, a SVM classifier is introduced to recognize whether a 

video bag is objectionable or not. 

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on September 17,2020 at 09:35:16 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2020.2992276, IEEE
Transactions on Circuits and Systems for Video Technology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

V. EXPERIMENTS 

A. Experiment Setup 

(i) Data Set 

Due to the lack of publicly available video sets for 

objectionable video recognition, we collect two sets from the 

Internet. One set includes 800 horror and non-horror video clips 

(referred to as Horror Set), and the other one includes 800 

violent and non-violent video clips (referred to as Violent Set). 

In addition, a public competition data set, violent scene 

detection set (VSD) 2014 [51], is also introduced to evaluate 

the performance of our method. 

 Horror Set  

We download a large number of movies from the Internet 

which consist of 100 horror movies and 100 non-horror movies, 

these movies are from China, US, Japan, South Korea and 

Thailand etc. The genres of the non-horror movies include 

comedy, action, drama and cartoon. We truncate each movie 

into several movie clips and each clip is treated as a bag. Then 

we invited 10 students in our laboratory to label each video clip 

as one of three categories: non-horror, a little horror and horror. 

We define “horror” scenes as those including serial killings, 

ghosts, monsters, vampires, animal killing, and irreligion so as 

to arouse the primary emotions of fear, horror, and terror and 

aren’t suited a child under 12-year-old to watch. If the “horror” 

elements of a scene evoke week emotions of fear, horror and 

terror and one can let child between 12 and 18 to watch, then it 

can be labeled “a little horror”. Others can be labeled 

“non-horror”. Then the final label of the video clip is decided 

by voting. Label with vote of more than 90% will be retained, 

otherwise it will be discarded. Finally, 400 video clips labeled 

“horror” and 400 video clips labeled “non-horror” with 

different genres are selected from the candidate video set to 

compose the Horror Set. 

 Violent Set 

Similar to Horror Set, we also collect 100 violent movies and 

100 none-violent movies from Internet. After truncating and 

manual labeling, 400 violent video clips and 400 non-violent 

video clips are finally selected to compose the Violent Set. For 

the annotators, we define “violent” scenes as those including 

fights, gun shots, explosions, and self-mutilation so as to 

stimulate mental impulses through showing the use of force to 

injure others or oneself and also aren’t suited child under 

12-year-old to watch. Labels with more than 90% votes are 

decided as the final labels. 

 VSD2014 

VSD2014 is a benchmark violence detection dataset and gets 

the validation during the 2014MediaEval Violence Scenes 

Detection (VSD) task [52,53]. The annotations have been 

created by several human assessors in a hierarchical, bottom-up 

manner. The training set in the dataset has 24 Hollywood 

movies and the testing dataset is composed by a set of 7 

Hollywood movies and 86 YouTube video clips.  

To make the dataset suitable for testing objectionable video 

recognition whose target is to identify whether a video is 

objectionable with video’s label instead of frames’, we truncate 

the movies into video segments and each segment is treated as a 

video bag. Its instances are constructed by key frames and 

spectrograms extracted from shots in the video bag via shot 

detection[35]. If there are violent shots in the video bag, it is 

annotated as positive bag, otherwise the bag is annotated as 

negative bag. 

(ii) Evaluation Criteria 

We used the precision (Pre), recall (Rec), and F1-measure (F1) 

to evaluate the performance of an algorithm. For each data set, 

given the ground truth of an objectionable video set (HS) as 

well as recognition results (ES) of an algorithm, the precision 

(Pre), recall (Rec), and F1-measure (F1) defined in Eq. (13) are 

used to evaluate the performances. 

    
|     |

|  |
     

|     |

|  |
    

     

|   |
   (  ) 

B. Experiment Results 

In the experiments, for Horror and Violent data sets, we 

conduct 3-fold cross validations 10 times and report the average 

performance. The parameters are selected by cross validation 

on the training set with regard to the F1-measure in each 

procedure. For VSD2014, we report the experiment results 

using the given training and testing set and select the 

parameters in the same way. 

(i) Comparison among Different Features 

In this experiment, two types of features, deep multi-instance 

feature and hand-crafted feature (HCR), are compared. The 

deep one is the proposed multimodal deep multi-instance 

feature (MDMF). Hand-crafted features are ones applied to 

recognize horror or violent video scene in [20], [29], [30] and 

[52]. The features in [20] are mostly extracted based on color 

emotion and color harmony theories for “horror” detection 

which we refer as “EVA”. While in [29], twenty visual, audio 

and motional features are tested individually for horror video 

recognition and five features are selected which are referred as 

“CAM”. Features extracted in [30] and [52] are designed for 

violent video recognition. In [30], special attributes are learned 

from violent video description and corresponding visual, audio 

and motional features are extracted. In [52], except normal 

visual, audio and motional features, improved trajectory 

features are extracted. We refer features in [30] and [52] as 

“Attr” and “VAT”. The details of HCR are shown in Table 1. 

The proposed MILRPS is used to compare the performance 

of different features as shown in Table 2. Comparing among the 

four hand-crafted features, EVA and CAM achieve better 

performance on horror set for their emotional features. While 

on three violent sets which have more action, gunshot, 

explosion and bloodiness scene, Attr and VAT achieve better 

performance because they focus on trajectory-based features, 

motion intensity, flame and bleeding features and so on. Even 

on the violent video sets, the performance comparison between 
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Attr and VAT indicates that the hand-crafted feature is lack of 

flexibility and portability on varying datasets. However, the 

proposed deep feature MDMF can learn the high level semantic 

and adapt to different data sets automatically as the best results 

shown in Table 2. 

TABLE 1 DESCRIPTIONS OF HCR 

HCR Feature description 

EVA [20] 

Emotional intensity; Color harmony; Variance of color; 

Lighting; Texture; Rhythm; MFCC; Spectral power; 
Spectral centroid; Time domain zero crossing rate 

CAM [29] 
Color structure; Audio Fundamental Frequency; Audio 
Signature; Audio Spectrum Spread; Motion Level 

Attr [30] 
Motion intensity; Flame; Bleeding; Audio energy; Energy 

entropy; 

VAT [52] 

Improved dense trajectories; histograms of oriented 

gradients; histograms of optical flow; motion boundary 

histograms; trajectory shape 

TABLE 2 EXPERIMENTAL RESULTS ON DIFFERENT FEATURES (%) 
Evaluation 

Criteria MDMF EVA CAM Attr VAT 

Horror 

Pre 89.33 86.96 86.01 85.77 85.13 

Rec 90.12 86.33 85.75 85.01 86.05 

F1 89.72 86.64 86.37 85.38 85.59 

Violent 

Pre 92.01 86.55 87.15 88.23 87.34 

Rec 92.39 87.12 87.92 89.62 89.35 

F1 92.2 86.83 87.53 88.92 88.33 

VSD2014 (Hollywood) 

Pre 67.93 61.61 62.73 63.58 64.25 

Rec 74.07 70.15 70.71 71.67 71.81 

F1 70.87 65.60 66.48 67.38 67.81 

VSD2014 (YouTube) 

Pre 52.54 43.48 44.33 45.18 46.03 

Rec 79.68 76.13 76.98 77.67 78.52 

F1 63.32 55.35 56.26 57.13 58.03 

 (ii) Comparison among Different Recognition Methods 

We compare the proposed instance selection method 

MILRPS with single instance methods and most prevailing 

MIL methods using the same deep features learned by the 

proposed deep MIL framework, as: 

MILES [39]: this is a MIL method which implicitly provides 

the earliest instance selection solution through bag mapping 

feature selection based on 1 -norm SVM classifier. 

MILIS [40]: this method improves MILES which proposes 

to use a normalized probability density function (PDF) to 

model all negative instances in negative bags, and then selects 

the most positive (negative) instance from each positive and 

negative bag, respectively. 

mi-Graph [54]: this method uses a graph to model the context 

between instances in a bag. 

MI-kernel [55]: this method regards each bag as a set of 

feature vectors and then applies a set-based kernel directly for 

bag classification. 

MI-SVM [56]: this method is extended from SVM to deal 

with MIL problems. It represents a positive bag by the instance 

farthest from the separating hyper-plane. 

TABLE 3 EXPERIMENT RESULTS ON DIFFERENT SET (%) 

Algorithm Pre Rec F1 

Horror 

MILRPS 89.33 90.12 89.72 

MI-CNN 86.88 85.43 86.15 

VCNN 83.23 86.93 85.04 

MC-MI-J-SC 87.61 87.95 87.78 

MILES 87.91 86.31 87.11 

MILIS 88.57 86.47 87.5 

MIKI 86.54 85.43 85.98 

ISK 86.74 86.11 86.42 

MI-kernel 83.84 84.15 83.99 

mi-Graph 85.75 85.44 85.6 

MI-SVM 83.32 81.58 82.44 

SVM 78.11 78.91 78.51 

KNN 91.2 60.1 72.45 

Violent 

MILRPS 92.01 92.39 92.2 

MI-CNN 88.62 89.03 88.52 

VCNN 85.92 89.89 87.86 

MC-MI-J-SC 90.27 91.09 90.67 

MILES 88.92 89.10 89.0 

MILIS 89.82 89.58 89.7 

MIKI 87.14 88.37 87.75 

ISK 89.35 89.98 89.66 

MI-kernel 87.28 88.91 88.09 

mi-Graph 88.7 89.23 88.97 

MI-SVM 85.59 87.24 86.41 

SVM 83.01 80.16 81.56 

KNN 82.58 75.98 79.14 

VSD2014(Hollywood) 

MILRPS 67.93 74.07 70.87 

MI-CNN 63.11 66.83 64.92 

VCNN 61.01 67.74 64.20 

MC-MI-J-SC 66.69 73.17 69.77 

MILES 63.77 68.89 66.23 

MILIS 63.0 70.96 66.74 

MIKI 63.94 68.65 66.21 

ISK 63.74 69.18 66.35 

MI-kernel 61.4 66.3 63.76 

mi-Graph 62.81 68.31 65.45 

MI-SVM 58.81 65.17 61.83 

SVM 58.14 55.92 57.01 

KNN 54.65 50.87 52.69 

VSD2014(YouTube86) 

MILRPS 52.54 79.68 63.32 

MI-CNN 49.17 66.92 56.68 

VCNN 47.85 67.69 56.07 

MC-MI-J-SC 51.41 78.61 62.16 

MILES 48.34 69.61 57.06 

MILIS 48.73 73.45 58.59 

MIKI 53.89 81.22 64.79 

ISK 45.87 69.53 55.27 

MI-kernel 43.68 66.94 52.86 

mi-Graph 45.39 69.19 54.82 

MI-SVM 41.73 64.79 50.76 

SVM 40.84 65.77 50.39 

KNN 39.98 63.07 48.94 

Multi-perspective cost-sensitive MI-J-SC (MC-MI-J-SC) 

[18]: this is an objectionable video recognition method based 

on Multi-instance joint sparse coding which considers 

multi-perspective of objectionable video simultaneously. 

MIL with Key Instance Shift (MIKI) [57]: this method 

addresses the problem that the distribution of key instances 

varies between training and testing phase by proposing an 
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embedding based method MIKI. 

MIL based on Isolation Set-Kernel (ISK) [58]: this method 

investigates a novel data-dependent kernel derived directly 

from data and introduces it into MIL. 

Video classification with CNN (VCNN) [59]: this work 

provides an extensive empirical evaluation of CNNs on 

large-scale video classification. It studies multiple approaches 

for extending the connectivity of a CNN in time domain to take 

advantage of local spatio-temporal information. In this 

experiment, the “frame with slow fusion” framework is 

selected to be compared for its good performance. 

Table 3 shows the average Precision (Pre), Recall (Rec) and 

F1-measure (F1) of different methods. From Table 3, the 

following points can be observed: 

 MILRPS achieves better performance than most other 

methods. This shows that reasonable mapping prototype 

selection could improve the objectionable video 

recognition accuracy. 

 The results of classification with MI-CNN show that 

MI-CNN achieves better performance than simple MIL 

methods such as MI-kernel, MI-SVM and video-based 

methods (SVM and KNN). While the improved MIL 

methods based on instance selection such as MILRPS, 

MILES and MILIS outperform MI-CNN. It reconfirms 

that instance selection is an effective way to improve the 

recognition performance of MIL-based methods. In 

addition, the performance on Pre and F1 of MI-CNN is 

better than VCNN. It is because that in VCNN the label of 

frame or clip is treated the same as its video. It is not exact 

for objectionable video in which not all frames are 

objectionable. While in MI-CNN such problem can be 

well solved by the additional “NoisyOR” layer with which 

the deep network can be learned with bag’s(video’s) label 

instead of instances’(frames’) and the higher semantic 

from instance to bag can be learned. 

 Comparison among several MIL methods based on 

selected prototype mapping, including MILRPS, MILES 

and MILIS, shows that our method MILRPS has best 

performance. In MILES, the selected prototypes are not 

given out explicitly; instead all the instances participate in 

the bag feature mapping and the selection will be 

implicitly conducted through feature selection based on 

 -norm SVM classifier. Although it has comparable 

accuracy, the high dimensionality of feature mapping 

limits its efficiency in applications with a large number of 

instances, e.g. video classification. MILIS first selects 

prototypes whose number is fixed as bag number and then 

gets bag mapping feature based on the prototypes. 

Although it avoids the high dimensional feature mapping, 

it still has following problems. (1) Although the most 

positive (negative) instances in bags are very typical 

training samples, they cannot represent the distribution of 

positive (negative) instances very well. So they have less 

effect on the real classification hyper plane. (2) The 

instance prototypes are devoid of representativeness and 

sensitive to noise or corruption. Our method not only 

avoids high dimension’s feature mapping, but also avoids 

fixing one instance for each bag with sparse constraint. 

The low rank constraint can simultaneously consider the 

subspace structure of instances to confirm the more 

informative of prototypes. 

 In MI-kernel, bag feature is designed as average similarity 

distance between all instances in any two bags. It can be 

considered as an approximate method with MILES or 

MILIS without instance selection. The overall evaluation 

among MI-kernel with MILIS, MILES, MILRPS shows 

that instances selection can improve the discrimination of 

video bag feature. More reasonable selection strategy can 

get better recognition result. 

 Although MC-MI-J-SC has no instance selection, they 

also achieve good performance owing to its 

multi-perspective and instance context in the bag. 

 Comparing MIL-based methods with SVM and KNN, we 

can find that MIL-based methods (frame-based methods) 

achieve better performance for taking the structure of 

video into account. Furthermore, if more cues existed in 

objectionable video recognition can be considered, much 

better performance can be achieved, just as MILRPS and 

MC-MI-J-SC shown. 

 MIKI achieves best performance on YouTube86, because 

YouTube86 is a generalization set in VSD2014 with 

different type of videos between train and test set. MIKI 

just focuses to address the problem that the distribution of 

key instances varies between training and testing phase 

through learning the importance weights for transformed 

bag vectors and incorporating original instance weights 

into them to narrow the gap between train/test 

distributions. The comparable performance achieved by 

our method shows its robustness when confronting 

variable data because of its ability to get the principal 

semantic by prototype selection. 

(iii) Experiments on the Representativeness of the Selected 

Instances 

In order to validate the representativeness of selected 

prototypes in MILRPS, we set the total number of the selected 

prototypes in MILRPS to be     of the instance numbers, i.e. 

       . We try different value of    from {10, 20, ... , 

100}. For each value of   , the average F1-measure of 10 times 

3-fold cross validations on the three benchmark sets are given 

in Fig. 3. It is very interesting to notice that the MILRPS 

generally achieves stable and best performance when    
,     -. This phenomenon shows that the selected instances 

can represent the most information of the whole instance space. 

In Fig. 4 we show some selected prototype examples from 

two objectionable video clips in horror and violent set. Each 

video clip is shown with its key frames and the prototypes as 

frames inside the red rectangles. Note that the prototypes 

obtained by our algorithm capture the main events of the video 

and the unimportant instances are certainly pruned. Through 

computing the mapping distance to these prototypes, more 

discrimination video bag feature is obtained. 
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Fig.3 Average F1-measure trained from different selected prototype number 

 

VI. CONCLUSION 

Two potential problems that hinder the effectiveness of 

MIL-based objectionable video recognition come from weak 

features and redundant and noise instances which contribute 

little to discrimination. In this paper, we proposed a MIL model 

based on representative prototype selection embedding deep 

instance representation learning. In this model, deep instance 

features are extracted from a novel deep network designed for 

MIL and a set of prototypes are selected through learning a 

self-expressive dictionary with sparse and low rank constraint. 

These prototypes not only have the representativeness of whole 

instances, but have the approaching distribution of instance 

subspaces. So, mapping to these prototypes, more 

discriminative bag feature can be obtained and deservedly 

improve the performance of objectionable video recognition. In 

the future, we will extend the deep multi-instance 

representation learning to more general classification task. 

 
Video1:  

 

 

 

 
Video2:  

 

 

 

 
 

Fig 4  Examples of selected prototype 
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APPENDICES 

Optimization Detail of SEDL-LRSC 
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), Eq.(8) is simplified as following: 
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We replace the quadratic term   by its first order 

approximation and add a proximal term [60]; With some 

algebra, the updating schemes are as follows, in which the 

subscript   indicates the iteration number. 
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. As suggested by [61], The 

solution to the above problem can be solved as: 
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Here    ( ) is the singular value decomposition(SVD),   is 

the singular value matrix of  . The operator   , - in Eq.(16) is 

defined by element-wise thresholding of  , i.e.,   , -  
    (,  ,  -   ,  -      ,  -)  for rank of   being  , and 

each   , - is determined as: 
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 Updating     : 
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Set          
    

  
,     ,  -   and    denote the      row of 

the matrix    and  , rewrite (18) as: 
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The optimization of (19) can be decomposed into   separate 

sub-problems. For each sub-problem, we have: 
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It is easy to show that the optimal solution   
   of Eq.(20) must 

lie on the same direction of ,  -  and takes the form:   
  

 ,  -  with    . By forming the Lagrangian dual form, the 

analytical solution of (20) can be easily obtained: 

  
  {

(  
 

  ‖,  - ‖ 
) ‖,  - ‖  

 

  

 ‖,  - ‖  
 

  

              (21) 

The solution of (19) can be obtained by stacking   
  as: 
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 Updating     : 
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where    
  

⁄  and           
    

  
. The solution to 

the above problem can be solved as [61]: 

          , -,  where (      )     ( )      (24) 

The inexact solution method for SEDL_LRSC is summarized 

in Algorithm 1. 
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Algorithm 1  Solution for SEDL_LRSC 

Input: Instance matrix  , parameter   and  . 

1: Initialize:                                 

            ‖ ‖ 
            . 

2: while not converged do 

3:   Update the variables                 as Eq.(16), (22) and 

(24) respectively. 

4:   Update Lagrang multipliers as follows: 

                        (            )   

                        (         ) 

5:   Update   as follows: 

                    

         

  {
       

     (√  ‖       ‖  ‖       ‖  ‖       ‖  )

‖ ‖ 
  

           
 

6:   Update         . 

7: end while 

Output: an optimal solution(        ). 
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